Atomistic structure of calcium silicate intergranular films between prism and basal planes in silicon nitride: A molecular dynamics study
نویسندگان
چکیده
Molecular dynamics simulations of approximately 15 Å thick intergranular films (IGFs) containing SiO2 and CaO in contact with two surface terminations of the prism (101̄0) and basal planes (0001) of Si3N4 were performed using a multibody interatomic potential. Samples with the same composition (1.5 mol% CaO) and number of atoms but different crystal planes (i.e., the prism and basal planes of Si3N4) were studied. In both the prism and basal cases, the IGF in the final configuration is well-ordered in the interface region. A small number of N ions from the crystal moved into the IGF near the interface, and O ions moved into the N sites in the crystal, indicating the formation of a Si–O–N interface. In addition, Ca ions do not segregate to the IGF–crystal interface. The bonding characteristics of the O ions at the interface with neighbor Si ions are different in the prism and basal cases. Such difference may be explained by the difference in the two crystal Si3N4 surfaces. The Si–O bond length of the IGF has a range from 1.62 Å to 1.64 Å, consistent with recent experimental findings.
منابع مشابه
Molecular dynamics simulations of the atomistic structure of the intergranular film between silicon nitride grains: Effect of composition, thickness, and surface vacancies
Molecular dynamics computer simulations were used to study the atomistic structure of intergranular films (IGFs) between two basal oriented Si3N4 crystals or between combined basal and prism oriented crystals. Ordering of the ions into the IGF induced by the crystal surfaces was observed using density profiles of the ions, although that ordering is effected by the roughness of the crystal surfa...
متن کاملRole of Nitrogen on the Atomistic Structure of the Intergranular Film in Silicon Nitride: A Molecular Dynamics Study
Molecular dynamics simulations of intergranular films (IGFs) containing Si, O, N, and Ca in contact with three different types of surface terminations of Si3N4 were performed using a multi-body interatomic potential. IGFs with the same Ca concentration (12 mol% CaO) but different nitrogen concentrations [N/(N+O)= 0, 15, 30, and 50%] were studied. In all 12 IGFs, Ca ions do not compete with the ...
متن کاملMolecular dynamics simulations of the effect of the composition of calcium alumino-silicate intergranular films on alumina grain growth.
Molecular dynamics simulations were performed to study the effect of the composition of the intergranular film (IGF) on anisotropic and isotropic grain growth in alpha-Al2O3. In the simulations, the IGF is formed while in contact with two differently oriented alumina crystals, with the alumina (0001) basal plane on one side and the (110) prism plane on the other. Five different compositions in ...
متن کاملEffects of Aluminum Incorporation in Tobermorite Structure on Chloride Diffusion: A Molecular Dynamics Simulation Study
In this paper, the effects of different aluminum to silicon ratios in silicate chains of calcium silicate hydrates (C-S-H) are evaluated on the diffusion coefficient of chloride ions by molecular dynamics method. Tobermorite is a crystalline phase that is used for studying C-S-H properties in nano scale, because of its analogous chemical composition to C-S-H. Aluminum incorporation in C-S-H and...
متن کاملEstimation of the Elastic Properties of Important Calcium Silicate Hydrates in Nano Scale - a Molecular Dynamics Approach
Approximately, 50 to 70 percent of hydration products in hydrated cement paste are polymorphisms of C-S-H gel. It is highly influential in the final properties of hardened cement paste. Distinguishing C-S-H nano-structure significantly leads to determine its macro scale ensemble properties. This paper is dealt with nano-scale modeling. To achieve this, the most important C-S-H compounds, with a...
متن کامل